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EFFECTS OF SHEAR DEFORMATIO N AND ANISOTROP Y
ON THE THERMAL BENDING OF LAYERED COMPOSITE PLATES

J. N. Reddy and V. S. Hsu
School of Aerospace, Mechanical and Nuclear Engineering

University of Oklahoma , Norman , OK 73019

A finite-element formulation of equations governing layered anisotropic

composite plates subjected to thermal and mechanical loadings is presented. An

exact closed -form solution is also presented for simpl y supported rectangular

cross-ply laminated plates under sinusoidal l oading to validate the finite

element developed herein. The finite-element results are in good agreement

with the closed -form results and with the results of others. Material pro-

perties typical of advanced fi ber-reinforced composites are used to show

the parametric effects of plate aspect ratio, side-to-thickness ratio , orien-

tation of layers, and edge conditions on the deflections and stresses.

INTRODUCTION

Wi th the increased use of fi ber-reinforced composites in aerospace and

mechanical engineering structures, studies involving the thermomechanica l

behavior of composite-material plates and shells are receiving greater atten-

tion. Most of the previous research in the field 5 of composites deals with

Isothermal problems. However, use of composites in environments with large

temperature changes (e. g ., space shuttle) requires the knowledge of thermally
Induced defiections and stresses. Further, thermal stresses are also induced

during the fabrication of composite materials.

The problem of thermal bending of anisotropic plates wes studied first

by Pel l [1], who derived the equations governing the transverse deflection

of a thin plate. Generalization of Pell’ s work to heterogeneous plates

subjected to arbi trary three-dimensional temperature distri bution is due to 
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Stavsky [2]. Recent studies in the analysis of plates laminated of fiber-

reinforced materials indicate that the thickness effect (i.e. shear deformation)

on the behavior of the plate is more pronounced than in isotropic plates [3].

The shear deformation theory that has been proven to be adequate in predicting

the overall response of laminated anisotropic plates is due to Yang , Norris

and Stavsky [4]. Based on the Yang—Norris—Stavsky (YNS) theory, Reddy [5,6]

developed a finite-element model that is algebraically simpler than previously

developed finite elements [7-10], and yet possesses competitive accuracy.

The present investigation is concerned with the application of the

penalty finite element [6] to the thermal stress analysis of l ayered aniso-

tropic composite plates. To illustrate the accuracy of the present element ,

closed-form solutions are also presented for the equations governing (i.e.,

the YNS theory) simply supported , rectangular , cross—pl y plates under sinusoid-

al mechanical and/or thermal loadi ngs. Finite-element solutions are presented

to show the effects of variations in geometry, lamination parameters, boundary

conditions, and loading on the shear deformation and thermal response of

statically loaded layered anisotropic composite plates .

GOVERNI NG EQUATIONS

Consider a plate of constant thickness t composed of a finite number

of anisotropic layers with arbitrary orientations. The coordinate system

is such that the middle plane of the plate coincides with the x-y plane ,

1 and the z-axis is normal to the middle plane , IR .

The displacement field in the YNS theory is a~~iimed....ta...bi_oL—the-4er,n
S

u = u0(x,y) + z*~
(x ,y) ç~;::T~~ ..~i

v = v~(x ,y) + z~ (x,y) \ t:~~..~m~ u~ ced ( 1)
S j~~~~j ric~ t to fl_ _

w = w(x,y)
By

Distrtbt ~t i 0fJ ~~~~~~~~~

A Lvat1at~d/0~
\D 1s~~’ e~ecjal
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where u, v, and w are the displacements along x,y, and z directions ,

respectively, u0 an d v0 are the in-plane displacements of the mid-plane , and

and are the shear rotations .

The equilibrium equations associated with the YNS theory are

N1 ,~ 
+ N6~~ 

= P1 N5~~ 
+ N2y 

= P2 ‘ ~~~~~~~ 

+ 
~2,y 

= -q
(2)

M
i~~

.+ M6~~ 
- 

~ 
= 0 M6~~ + M2~~ 

- Q2 = 0

where Ni x  
= aN

~
/
~
x etc., p1 and p2 are the in-plane distributed forces,

q is the transversely distributed load , and N1, 
~ 

and M1 are the stress

and moment resultants defined by

t/2 t/2
(N 1~M~) 

= J (l ,z)~ dz , (Q1,Q2) = J (a x~~a z~ 
dz (3)

-t/2 -t/2

Here c~1(i=l ,2,6) denote the in-plane stress components ~~~ 
= 

~~~
‘ 
~2 

= ay~

a6 =

Assumi ng monoc linic behavior (i.e., one plane of elastic symmetry) for each

l ayer, the consti tutive equations for an arbitrarily laminated plate are

A~ A12 A16 0 0 B11 B12 8l 
— 

U 
-

N2 A12 A22 A26 0 0 B12 B22 826 V
0 y

N6 A16 A26 A66 0 0 B16 826 866 uoy +vo,x N~
= 0 0 0 A44 A45 0 0 0 

~~~~ 
- 0

0 0 0 A45 A55 0 0 0 w~~+~1~ 0

M1 B11 B12 B15 0 0 D11 D12 D16 ~~~~ MT

M2 812 B22 B26 0 0 D12 D22 D26 ‘1’y,y
146 !16 B26 866 0 0 016 D26 D65 ~~~~~~~~~~~~ 

M~

The plate stlffnesses A 1~~ B~~, and Dii are given by

________ . .
~~
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Z~~ 1

(A 1J~B1J~D1J ) = 

~ 
JZ

m 

Q~~ (1 ,z,z2) dz , (i ,j = 1 ,2,6)

(5)
m+l

A .~~~ Z f k k
8
Qc~~~dz , (ct = 6—i ,~~ = 6—j; i ,j= 4,5)

m Z

where ~~ are the stiffness coefficients of the m-th layer in the plate coord inates,

and is the distance from the mid-plane to the lower surface of the m-th

layer. The stress and moment resultants , NT and MT, due to thermal loading

are defined by

m+l

S 

(N11 M1) 
= 

~ 
~~ 

i,~(T
0
,zT 1) dz , (i ,j = 1 ,2,6) (6)

where are the thermal coefficients of expansion in the plate coordinates,

and T is the temperature change from a reference state,

T(x,y,z) = T0(x ,y) + zT1 (x ,y) (7)

Note that the temperature variation through the thickness is assumed to be

linear , consistent wi th the plate theory.

Substituti ng Eq. (4) into Eq. (2), we obtain the followi ng operator

equation ,

= {f} (8)

where {ô} = (U
O~~

V
O

IW .*X *Y
}

T
I [L) is the (synretric) matrix of differential

operators ,
+ 2A16d12 + A66d22

= (A 12+A66)d12 + A16d11 + A26d22 , L~~ ~ 0

L145 B11d11 + 2B16d12 + B66d22
L15 

= (B12+B66 )d12 + B16d11 + B25d22 L24
L22 2A26d12 + A22d22 + A66d11 , L23 = 0

L25 2B25d12 + B22d22 + B66d11

‘ 

S

~~~~~~~~~~ ~~~~~~~~~~ . - ‘ .~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ h. .. .. 



L33 = -A44d11 -2A45d12-A55d22, L34 
= -A44d1 -A45d2

L35 
= -A45d1-A 55d2, L44 

= D11 d11 +2D16d12+D56d22-A44

L45 = (D12+D66)d12+D16d11 +o26d22-A45, L55 = 2D26d12+D22d22+066d11 (9)

and the components of the generalized force vector, {f}, are given by

f1 =N T ,~~+N ~ y +P l f2 = N ~~x +i4y + P 2
(10)

f3 = q  , f4 =M T x +M ~~y f5 = M
~~x

+M 2y

In Eq. (9), d1~ denote the differential operators

d1~ 
= , d~ d~0 

= , (i,j = 0,1 ,2)

EXACT CLOSED-FORM SOLUTION

The boundary-value probl em associated with the equilibrium of l ayered

anisotropic composite plates involves solving the operator equation (8)

subjected to a given set of boundary conditions. It is not possible to

construct exact solutions to Eq. (8) when the plate is of arbitrary geometry,

constructed of arbitrarily-oriented l ayers, and subjected to an arbi trary l oading

or boundary conditions. However, an exac t clo~ed-form solution to Eq. (8) can
be constructed when the plate is of rectangular geometry with the following

edge conditions , l oading , and plate construction .

Boundary conditions (freely supported)
u(x ,O) = u(x ,b) = 0, N2(x,0) = N2(x ,b) = 0
v(0,y) = v(a,y) = 0, N1(O,y) 

= N1(a,y) 
= 0

w (x ,O) = w (x ,b) = w(0,y) = w(a,y) = 0 (11) b

= P~
(x ,b) = 0, M2(x ,O) * M2(x,b) = 0

= ~~~~~ = 0, M1 (O ,y) = M1 (a ,y) ~ 0 
- 

~ a — x

L~~~~~~~~I~~~~~.S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Loading (sinusoidal)

q=qmn sin ax sin ~y, T0
=it
~
’ sin ~X sin By, Ti=l’lr sin ~~ S i fl BY

° ° (12)
sin cix cos By , p

2 P~” cos cix sin By ci = m~r/a , B = nit/b

and m and n are integers.

Plate construction (cross-ply, i.e., should be either 00 or 900 )

A16 = A26 
= A45 =0 , B16 

= B26 0 , D16 = 026 = 0 , ci
6 
= 0  (13)

Under these specific conditions , the solution (u0iv0,w,~
P
~
,k,) to Eq. (8)

is of the form,

u0 
= U~,, cos cix sin By , v0 

= Vmn Sin ci x cos By

w W ~~ sin cix sin By (14)

= Xmn cos cix sin By 
~ 

= 

~
‘mn sin cix cos By

where Umn~ Vmn~ etc. are parameters to be determined subjected to the con-

dition that the solution In Eq. (14) satisfies the operator equation (8).

Substituting Eq. (14) into Eq. (8), we get

[C]{~} = {F} (15)

where

(~} = {u~ , Vmn~ 
Wmn~ Xmn~ ~

1
mn}

T
t {F} = ~~~~~~~~~~~~~~~

and the elements of the coefficient matrix , [C], are given by

C11 
= -A 11ct2 

- A66B
2, C12 = -(A12 + A66 )cz B

C13 0, C14 
-cs2B11 - B66B

2, C15 = -(B12 + B66)ciB

C22 = —AflB
2 

- A66cs2, C23 = 0, C24 = C15 , (17)

25 — - 
228 - 33 

— ci - 8 
~

C34 = -ciA55, C35 * -BA44, C44 -D11cz 2 - D66B
2 - A55

C45 = -(D~ + 066)uB , C55 * ~D66cz2 - 0228
2 - A44 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ —-
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Thus, for a given ci = mit/a, B = nit/b, q , 
~~~“ (see (10) and (12)), and cross-

ply construction, one needs to solve the 5 by 5 matrix equation (15) for the 
S

vector {A} of amplitudes of the generalized displacements.

FINITE-ELEMENT FORMULATION

As pointed out in the previous section, exact solution to Eq. (8) can

be obtained only under special conditions of geometry, edge conditions , loadings ,

and lamination. Here we present a simple finite-element formulation which does

not have any limi tations (except for those implied in the formulation of the

governing equations).

Suppose that the region Rissubd ivided into a fini te number N of subregions

or finite elements, 
~e 

(e = l ,2,...,N). Over each element the generalized

displacements ~~~~~~~~~~~ are interpolated according to

r 1 r 1 2
U

0 
— £ U

14~ , V
0 

— Z V
i 4~ 

, w = Z w 1~ ,

I i Si 

(18)p p

~x~~~~Pxi~j ‘~~y~~~~
’yi ’~i•1 1

where •~ (ci = 1 ,2,3) is the i nterpolation function corresponding to the i—th node

in the element. Note that the in-plane displacements , the transverse dis-

placement, and the slope functions are approxima ted by different sets of

interpolation functions. While this generality is included in the formula-

tion (to indicate the fact that such independent approximations are possible),

we dispense wi th It in the interest of simplicity when the element Is actually

prograiaued and take = = (r = s = p). Here r, s, and p denote the

number of degrees of freedom per each variable. That is , the total number of

degrees of freedom per element is 2r + S + 2p.

S — S ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

.-~~~~~~~~~~~~~
-
--

_ _ _ _ _ _ _ _ _ _  I.. ~~~~
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Substi tuti ng Eq. (18) i nto the Galerkin integrals associated with the

operator equation (8), which must also hold in each element Re~

J ([L](t~} - {f})f~} dx dy 0 (19)

and using integration by parts once (to distribute the differentiation

equally between the terms in each expression),we obtain

[K1~] [K
12] [0] [K14] [K15] tu} fF1 3

[K12] [K22] [0] [K24] [K25] fv}

[0] [0] [K33] [K34] [K35] cwi = (F3~ (20)

[K14] [K24] [K34] [K44] [K45] ~~
[K15] [K25] [K35] [K45] [K55] 

e ~~~ e 
fF5 

e
’

where the ~u}, (v}, etc. denote the columns of the nodal values of u , v ,

respectively, and the elements K~ (ci,B = l ,2,...,5) of the stiffness matrix

and F
~ of the force vector are given by

= A1 1 G1~ + A16(G~ + G~
’) + A66G~

’
1

K~ 
= A12G7~ + A16G~1 

+ A26G~
’
~ + A66G~

’

K~ 
= B11 H~ + B16(H~~ + H~~) + B66H’~’~

K15 = B HXy + B HX + H~
’ + B ~xyii 12 ii 16 ii ‘~26 Ij 66 ii

= A26(G~ + G~~) + A22G~
’
~ + A66G~

K24 B H’~ +8 HXY +B Hxy +B H~
’¶ lj 16 ii 66 ii 12 11 26 ii

= B26(H~~ + H~~) + B66H~1 + B22H~’J

K33 = A44S~1 
+ A45(S~ ’ + Sn’) +

K34 A44R~ + A45R~ , K~ = A45R~ + A55R~

L. 
S 

.~~~~~~~~~~~~~~ . ..~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -4
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K~ = D11T~1 
+ D16 (T

~~ 
+ T~~) + D66T~1 

+ A44T?1

K~~ = D26 (T~~ + T~~) + D
66

T~J + D22T
~
’ 1 + A55T~ . (21 )

= J f c p ~ dx dy, (ci = 1 ,2; 1 = 1 ,2,...,r)

F~ J ~~~~ dx dy, (i = 1 ,2,...,s)
1 Re

= 
~~~ dx dy, (ci = 4,5; I = l ,2,...,r) (22)

e
where

= f •~. ~
‘. dx dy , (i ,j = l ,2,...,r)

Ii 13 p

H~~ = 
~ 

dx dy , (i = 1.,2,...,r; j  = 1,2,..., t)
13 R ‘‘~ ‘~~ ‘~~~

= dx dy , (i ,j = l ,2,...,s)

R~ 3 = J q
~ dx dy , (i = 1 ,2,...,s; j  = 1,2 ,... ,t)

13 R ~~

= 

JR: ~~~ 

dx dy , (i.j = 1,2,... ,t) , (~~,n = 0,x ,y) (23)

and G~ = G~1, etc. In the special case in which = = p~ , all of the

matrices in Eq. (23) will coincide .

In the present study rectangular elements of the serendipity family

are employed with the same Interpolation for all of the variabl es. The

resulti ng stlfness matrices are 20 by 20 for 4-node element and 40 by 40

for the 8-node element. As pointed out in a recent study [6], the YNS

theory can be derived from the corresponding classical thin plate theory

by treating the slope—displacement relations

~~~~~~~~A ~~~~~~~~~~~~~~~~~~~~
- ---- - ~~~~~~~~~~~~~~~ —~~—i~~~~ - ~. —— - -~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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3W _ 3W 24
~x 

8x ‘ ~y

as constraints. Indeed, when the constraints in Eq. (24) are incorporated

S into the classical -thin plate theory by means of the penalty method , the

resulting equations correspond to the YNS theory with the correspondence,

ex - ‘~‘x 
and ey - IP

y 
(25)

It is now well-known that whenever the penal ty method is used, the so-called

reduced integration [11] must be used to eval uate the matrix coefficients

in Eq. (21). That is , if the four-node rectangular element is used , the 1 x 1

Gauss rule must be used in place of the standard 2 x 2 Gauss rule to numerically

evaluate the coefficients K,3. For more details on the effect of reduced

integration on the solution accuracy, one can consult [12 ,13].

NUMERICAL RESULTS

The finite element based on the formulation of previous sections is

employed in the static analysis of rectangular plates . The effect of

boundary conditions , laminations , and loadings on the bending deflections

and stresses is investigated . In the following analyses , two types of

materials properties, typical of advanced fiber-reinforced composites ,

are employed:

Material I: E1/E2 
= 25, G12/E2 0.5, G23/E2 

= 0.2, V12 
= 0.25

Mater ial II: E1/E2 = 40 , G12/E2 0.6, G23/E2 = 0.5, vl2 = 0.25

It is assumed that G23 and = v13. A value of 5/6 was used for

the shear correction coefficients, k~ k~ (see Wh itney [14]). All of the

computati ons were carr ied out on an IB1~1 370/158 computer.

First the effect of various boundary conditions on the bending 

SS-

~~~

-.—

~~~~

-- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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deflection is investigated . Tabl e 1 contains deflections for six types

of boundary conditions . BC-I corresponds to a simply supported case, BC-Il

corresponds to the case in which two vertical sides are simply supported

and the other two sides clamped , and BC-Ill through BC-VI correspond to

various clamped cases. Note that there are great differencesbetween the

deflections obtained by BC-Ill and BC-V. The finite element results are

in close agreement with the exact solutions of Timoshenko [15] and Das and

Rath [16]. Table 2 contains bending deflections for BC-I and BC-Il for

isotropic (V = 0.3) plate subjected to uniform temperature distribution

(i.e., q 0, P1 
= 0, P2 

= 0, T~ = 0, ~ 
= 1.0). The finite elei~ent results

are in good agreement with Timoshenko [15] for all aspect ratios . The

table al so shows the numerical convergence of linear and quadratic finite

elements .

Figures la and lb show variation of the bending defl ection with the

aspect ratio , and side—to-thickness ratio for isotropic and orthotropic

single-layer plates . Note that the deflection increases with decreasing

aspect ratio for thin isotropic plates, whereas for orthotropic plates

(Material I, = 3ci1 ), the deflection increases slowly with a/b > I

and then decreases. That is , orthotropic materials have a damping effect

on the transverse deflection. The effect of thickness shear strain on the de-

flection is shown in Fig. lb. for different aspect ratios of single—layer

orthotropic plate . It is clear that there is less than 10% increase in

deflection for thick pl ates (compared to the thin plate deflection) sub-

jected to thermal loading , whereas it is known that the increase in de-

flection is of order 30% in plates subjected to mechanical loading . Again ,

the finite element results are in close agreement wi th the closed- form 
S

solution presented herein.
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Tabl e 1. Effect of boundary conditions on the deflection for isotropic
plate subjected to uniform temperature (q0, T0 0, v=O.3)

Deflection ,_~
Mesh a/b r- Exact FEM Boundary Conditi ons

1.0 0.9578* 0.9575 u=w=
~
p
~~
0 on CD

Q4 1.5 0.5824 0.5822 BC-I:
2.0 0.3702 0.3701 v=w=P~=O on BC

1.0 0.206
k 0.2063 u=v=w= i x=Py=O on CD

Q4 1.5 0.036 0.03601 BC-U: v=w= I =0 on BC
2.0 0.0055 0.00561

1.0 — 0.0137
Q4 1.4 — 0.0224 BC— Ill: U=V=W=

~
i)x=~

1)y=O on CD and BC
2.0 — 0.0276

1 .0 0.0138* 0.0138 u=v=w=~p — O  on CD
Q4 1.4 0.0226 0.0226 BC-tV:

2.0 0.0277 0.0277 uv= w
~

P
~~

O on BC

1 .0 — 0.0445 u=v=w=~.1( O on CD
L4 1.2 — 0.0619 BC-V : u v=w *~~O on BC

L4 1.0 — 0.0455 BC—tV: u v w 0  on CD and BC

— lot — _11
* Timoshenko [15], + Das and Rath [16]; w = 

cii ’ a2 w , I~ =
y 1

u
~~

=O 
____ a 

b
~~Quarter plate

A V=41y =O x

Q4 = 4x4 mesh of (8—node ) quadratic elements
L4 = 4x4 mesh of linear elements
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1.2 I
ST sinu~~~dal temp ; UT-uniform temp .

isotr~pic , BC-I , ST
LU 

,~~~~~~~~~~ orthotropic( Mat. I)

• 
~~~~0.8 .

0.4 iSotropi c , BC-Il , UT

O FErI ~~~~~~~~~~~~~~~~~ 
S

0.5 1.0 1.5 2.0- .a/b
(a) Defl ection ver sus aspect ratio

I 

a/b = 0.5

1 .04i- 1_a/b = 1 -~

l.02~ (Ortho tropic plates , Mat. I , ~ = 3ci1)

~~ 
0.96f.. BC-I , ST

~ 0.94 ~~~~~~~
u 0.92 — Exact J

.aoA FEll ~—a/b = 2
0.77 ~~~ . ,......_1 1

0.75 -

0.73 I • I

10 20 30 40 50 a/t

(b) Deflection versus side—to—thickness ratio

Figure 1. Effects of aspect ratio , side—to—thickness ratio , loading
and boundary condi tions on the single—layer plates .

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •~~ _ _ _ _ _ _ _ _ _
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Table 2. Effects of the as~ect ratio, and side-to-thickness ratio
• on the deflection for isotropic plate subjected to uniform

temperature (q = 0, T0 
= 0, ~ = 0.3)

B C I  BC II 7
t/a Source

• a/b=1 a/b=l.5 a/b=2 a/b=l a/b=l.5 a/b=2

Das and Rath [16] Q•957* 0.582* 0.370* 0.206* 0.036* 0.0055*
Timoshenko (15] 0.9578 0.5824 0.3702

0.01 
— 

L2 1.0833 0.6540 0.4078 0.1927
L4 0.9832 0.5965 0.3775 0.2057

FEM Q2 0.9632 I 0.5908 0.3806 0.2005

_____ 

Q4 0.9575 0.5822 0.3701 0.2063 0.0360 0.00561
Das and Rath [161 0.960 0.584 0.371 0.213 0.039 0.0067
Timoshenko [15] 0.9578 0.5824 0.3702

0.05 L2 1 .0833 0.6540 0.4078 0.2168 0.0127
L4 0.9832 0.5965 0.3775 0.2144 0.0332

FEM Q2 0.9552 0.5820 0.3710 0.2130 0.0420

_____ 

Q4 0.9576 0.5821 0.3700 0.2132 0.0390 0.0066
Das and Rath (16] 0.962 0.586 0.373 0.223 0.044 0.0085
Timoshenko [15] 0.9578 0.5824 0.3702

0.075 L2 1 .0833 0.6540 0.4078 0.2353 0.0231
L4 0.9832 0.5965 0.3775 0.2239 0.0380

• FEM Q2 0.9554 0.5815 0.3702 0.2210 0.0441

_____ 

Q4 0.9576 0.5821 0.3700 0.2219 0.0432 0.0085
Das and Rath [16] 0.967 0.589 0.375 0.235 0.050 0.0114
Timoshenko [15] 0.9578 0.5824 0.3702

0.10 L2 1.0833 0.6540 0.4078 0.2545 0.0342

FEM L4 0.9832 0.5965 0.3775 0.2363 0.0445
Q2 0.9555 0.5813 0.3699 0.2322 0.0491 0.0113

_____ 

Q4 0.9576 0.5821 0.3700 0.2330 0.0492 0.0108
I

* l imi ting soluti on as t/a -
~~ 0

+— lOt . w
— 2

ci’



15

Figure 2 shows the mechanical response of two-layer cross—ply (0°/90°)

square plates (Material I) subjected to si nusoidally and uniformly distri buted

loading (T0 
= T1 = 0). Note that the shear deformation effect is relatively

more pronounced for sinusoida l loading than for uniform loading . In Table

3, the deflections due to thermal loading and combined l oading are compared

with the corresponding closed-form results. The tabl e also contains deflec-

H tions for single-layer and three-layer (00/900/00) plates. It wes noted

that the deflections obtained for four-l ayer, syninetric cross-ply plates

•1 (00/900/900/00) are very close to those obtained for singl e-l ayer plates (for

the same total thickness).

The effect of thickness and aspect ratio on the thermal and mechanical

response of cross-ply plates (00/900, 00/900/00 , 00/900/900/00 , Material I,

= 1.0, ct2 = 3ci;, ci~ = 10~~, P1 = P2 = 0) is shown in Figure 3. The

finite-el ement solution is in close agreement with the closed -form solution

everywhere except for small values of a/t (i.e. for thick plates). The effect

of thickness shear on the deflection is less with the i ncreasing aspect ratio.

Clearly, the antisymmetric cross-ply plates (00/900) have different response

characteristics with respect to the aspect ratio when compared with the

synunetric cross—ply plates (00 , 00/900/00 , or , 00/900/900/00) .

In Figure 4, the closed —form and finite-element solutions of four-

layer, cross-ply (00/900/900/00) plates subjected to sinusoidal temperature 
S

distri bution and/or mechanical loading are compared. It also contains

finite-element solutions for simply supported platessubjected to uniform

temperature distri bution , and clamped platessu bjected to parabolic tempera-

ture distribution along y-axis and constant along x-axis. No closed-form

solutions are availabl e for these two problems. Specifically, the figure

shows non -dimensional deflection versus side-to-thickness ratio for the

___________________________ 

•
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• • I

6. • — Closed-form solution

2..! Finite element solution

5. • ‘
~ (a/b = 1 , Material I , O °/90°)

Uniform l oad i ng (UL)
S —

~~~
.... — — — — —

3. \\,~ __________________r Sj
~

usoidal loading (SL)
-~~

2 5 I

10 20 30 40 50 a/t

S (a) Displacements

I • • I I ‘ 

-o
1.0 - 

‘

~~

-

~~~~ 

(at top and bottom of plate ) - UL
(at midplane ) - UL

N,~~~ - UL
0.8 • 

XY

~ 
( top and bottom ) - SL

oo_o —o —

P (interface) - SL
0.6 •.—~~~~• • .

• 
~ - U L

,/ X Z
u._ _ _ _ . ‘c ~~~~~ 

—

~~~

~~ - SI.
‘C xy

0.4 . —
~~~~~~~~ 

- SL 
,.~-closed-form

•  ,~-FEM

0 2 . 

U—. 
S I 7

• 10 20 30 40 50
(b )  Stresses

FIgure 2 MechanIcal bending of two-layer (00/900)
• square plates (Material I).
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\ 0 . 0u  FEM

6.0 1
• 

~ s~~~~~~~~
__ a/ b = 1 (0°/90°)

• 2 . 0 •  \ 4
a / b= 1 (00/ 900/ 00 ,00 ,00/900/900/00)

S .-
(00/ 900)

I I • I I I

a/t— 10 20 30 40 50

(a) Deflection versus side-to—thickness ratio

6 •N~, two-layer cross-pl y co oi
~ooi

4 ,  
~~~~~~~~~~~~~~~~~ 

o~~~ 
;ct

a/ b~~~~~~~j1~~~~~~~~ i.0 L5 2.0
(b) Defl ection versus aspect ratio

FIgure 3 Effect of thickness and aspect ratio on the
deflection of cross-ply plates under combined loading
(Matérial I, i•i 1.0 , T~ 0, ci2 3

~~i, ~~i • = l0~~)

L ~~~~
_

~~~~
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Table 3. Effects of loading, lami nation , and thickness on the
non-dimensional i zed deflections for simply-supported
(BC-I) square plate (Material I, 

~ 2 = 3a1)

~ (sinusoidal temp.) ~ (sinusoidal temp. and loading)
a/t _______________________________________ _______________________________________

00 0°/90° 0°/90°/0° 00 0°/90° 0°/90°/0°

100 1.03l 3~ 1.6765 1.0949 1.0008 2.4563 1 .0025

(l.o3l2)* (1.6764) (1.0948) (1.0006) (2.456) (1.0018)

1 .0317 1.6765 1.0963 1.0117 2.4625 1.0150
50

(1.0317) (1.6764) (1.0962) (1.0116) (2.462) (1.0149)

1 .0334 1.6765 1.1018 1.06068 2.509 1.0802
25

(1.0333) (1.6764) (1.1017) (1.0657) (1.509) (1.0800)

1.0346 1.6765 1.1058 1.1117 2.5448 1.1292
20

(1.0345) (1.6764) (1.1057) (1.1116) (2.544) (1.1290)

• 1.0396 1.6765 1.1224 1.2974 2.7003 1.3372
12.5

(1.0395) (1.6764) (1.1223) (1.2973) (2.700) (1.3371 )

1.0440 1.6765 1.1365 1 .4672 2.8440 1.5233

10 (1.0439) (1.6764) (1.1364) (1.4670) (2.844) (1.5231)

1.0602 1.6765 1.1870 2.1869 3.4667 2.2832
6.25

(1.0601) (1.6764) (1.1869) (2.1867) (3.466) (2.2829)

1.0721 1.6765 1.2224 2.8332 4.0416 2.9424
5

(1.0720) (1.6764) (1.2224) 2.8329) (4.041) (2.9421)

+closed—form solution; *finite lement solution

= 10 hw/cs1T1a2 , = w(~) ~j 8 = ii’~[4G 12 + 
Ei

1
+ (1+vi~ )E ]/l2

~ 

-i.- -~~~~~~~~ 
-
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followi ng cases(obtained using 2x2 mesh of quadratic elements):

1. simply-supported square plate (SS) subjected to sinusoidal loading

• (SL) (Material I, T~ = T1 = 0, P1 = P2 = 0)-c-

2. same as Case 1 , except Material II , and sinusoidal temperature (ST)

• di stribution (T1 = 1.0)—.—
• 3. same as Case 1 , except sinusoidal temperature (SI) distri bution

(Y1 = l02)_.o_

4. same as Case 1 , except q0 
= 0, and sinusoidal temperature (ST)

distribution -..—

5. same as Case 1 , except q0 
= 0, and uniform temperature (UT)

distri bution

6. clamped square plate (CC) subjected to parabolic temperature

distri bution, equivalent to the mechanical loading , P1 = P2 = 0,

q = ~*, where
E1(ct;+ v21cz2) —

P* = Ti
6(l—v12v21)

S Different nondimensionalizations are used for pure mechanica l l oading (
~~ 

103wE~t3)

and pure temperature loading (w = 
— ). In the case of combined loading,

cx1 T1a2
the same nondimensionalization as that in mechanical l oading is used . It

is found that the thermal bending (q0 
= 0) is virtually independent of the

mechanical properties (i.e. same for Materials I and II) of the plate . Al so,

• the thermal bending () is almost independent of the thickness for sinusoidal

temperature distri bution. Ho~~ver, it is clear from Case 6 that the thickness
effect is more pronounced on the deflection of a clamped plate under parabolic

temperature distri bution.

Figure 5 shows the effect of thickness on the thermal bending (q0 
= 0,

Pi P2 = 0) of cross—ply and angle—ply plates. First note that the deflection

scale is amplified (compared to Figure 4) in order to show the relati ve

_______________ ____________

k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _ _
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16 • — closed—form (o0/900,go o,00, a/~~1)

~‘~°‘QUFEM (SL and/or ST) simply supporte

12 

O
\__Materiai I, T1 = 0

Material I, 
~~1 

= 102 , q0 
= 102

10 0—
S 

II
• 8 - _~_~ FEM , 0~/90~/90~/0~ , -

~~ 

--- 

~~~e:i~ ; 
= 0 , UT

a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

10 20 30 40 50 alt

Fi gure 4 Comparison of closed-form solutions and finite
element solutions for four-layer cross-pl y
(0°/90°/90°/0°) plate .

- -  • • ~~~~~~~~~ •• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- 
- • 

-



—- ~~~~~~~~~~~~ 
- --

- -

21

effect of thickness shear strain. For example , if the deflection for 4-layer

(0°/90°/90°/0°) cross-ply (Material II) shown in Figure 5a were plotted

to the same scale as that used in Figure 4, it would have overlapped on that

shown (In Figure 4) for 4-layer (0°/90°/90°/0°), cross-ply (Material I).

Although not plotted, the deflection vs. side-to-thickness ratio plot for the

four-layer anti syninetric cross-ply (0°/90°/0°/901 , Material II , a/b = 1)

pl ate is almost identical to that shown for the 4-layer, anti symetric angle-

ply (45°/—45°/45°/-45° , Material II , a/b 1) except for an additive constant

(i.e. shift) of unity (with respect to the nondimensionalization used there).

From Figure 5a it is clear that the thickness shear effect is amplified for

larger aspect ratios (a/b). Figure 5b shows the normal shear stresses for

the two cases for which deflections are plotted in Fi gure 5a. The thermal

bending (deflection as well as stresses) for synmietric angle-ply (45°/-45°/

-45°/45°, Material II, a/b = 1) plate wes found to be (not shown here for

brevity) similar to that of the antisymmetric angle-ply plates for the same

material properties, loading , and boundary conditions , except for a small

positive shift in the deflection.

SUMMARY AND CONCLUSIONS 
S

A finite—element formulation of equations governing layered anisotropic

composite plates subjected to mechanical as well as thermal loading is

presented. The element includes the effect of shear deformation and involves

• five degrees of freedom (three deflections, and two slope functions) per

node. Numerical convergence of linear and quadratic elements Is shown,

and results are presented for cross-ply and angle-ply rectangular plates

subjected to sinusoidal and uniform loadings; thermal , mechanical , and com-

bined loadings are considered . To check the finite element results, a closed-

form solution Is developed herein for cross-ply rectangular plates subjected

5T1I i IT7J~~
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1.6 r I I I I I

dI
~ ,,
,—(0°/90°/90°/0°), Material II

1.4 q0 = 0 , a / b = 1  S
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—0 ________________________
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Figure 5 Effect of thickness on the thermal response of
cross-ply and angle—ply simply supported plates
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to sinusoidal mechanical and/or thermal loadings. The finite -element results

agree very well with the closed—form sol utions. The maximum error (about 10%)

in deflections and stresses occur in the thick plate region (i.e., for side-

to—thickness ratios smaller than 10). Thus, the finite element developed

herein is computationally simple compared to other plate and shel l elements

used previously in the thermal stress analysis of plates. Extension of the

present element to nonlinear analysis seems to be the next logical step.

In that case, the present element saves substantial computational costs.
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